Illuminating the ‘‘black box’’: a randomization approach for understanding variable contributions in artificial neural networks

نویسندگان

  • Julian D. Olden
  • Donald A. Jackson
چکیده

With the growth of statistical modeling in the ecological sciences, researchers are using more complex methods, such as artificial neural networks (ANNs), to address problems associated with pattern recognition and prediction. Although in many studies ANNs have been shown to exhibit superior predictive power compared to traditional approaches, they have also been labeled a ‘‘black box’’ because they provide little explanatory insight into the relative influence of the independent variables in the prediction process. This lack of explanatory power is a major concern to ecologists since the interpretation of statistical models is desirable for gaining knowledge of the causal relationships driving ecological phenomena. In this study, we describe a number of methods for understanding the mechanics of ANNs (e.g. Neural Interpretation Diagram, Garson’s algorithm, sensitivity analysis). Next, we propose and demonstrate a randomization approach for statistically assessing the importance of axon connection weights and the contribution of input variables in the neural network. This approach provides researchers with the ability to eliminate null-connections between neurons whose weights do not significantly influence the network output (i.e. predicted response variable), thus facilitating the interpretation of individual and interacting contributions of the input variables in the network. Furthermore, the randomization approach can identify variables that significantly contribute to network predictions, thereby providing a variable selection method for ANNs. We show that by extending randomization approaches to ANNs, the ‘‘black box’’ mechanics of ANNs can be greatly illuminated. Thus, by coupling this new explanatory power of neural networks with its strong predictive abilities, ANNs promise to be a valuable quantitative tool to evaluate, understand, and predict ecological phenomena. © 2002 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rainfall-runoff modelling using artificial neural networks (ANNs): modelling and understanding

In recent years, artificial neural networks (ANNs) have become one of the most promising tools in order to model complex hydrological processes such as the rainfall-runoff process. In many studies, ANNs have demonstrated superior results compared to alternative methods. ANNs are able to map underlying relationship between input and output data without prior understanding of the process under in...

متن کامل

Knowledge Extraction from the Neural ‘Black Box’ in Ecological Monitoring

Phytoplankton biomass within the Saginaw Bay ecosystem (Lake Huron, Michigan, USA) was characterized as a function of select physical/chemical indicators. The complexity and variability of ecological systems typically make it difficult to model the influences of anthropogenic stressors and/or natural disturbances. Here, Artificial Neural Networks (ANNs) were developed to model chlorophyll a con...

متن کامل

Optimizing Multiple Response Problem Using Artificial Neural Networks and Genetic Algorithm

  This paper proposes a new intelligent approach for solving multi-response statistical optimization problems. In most real world optimization problems, we are encountered adjusting process variables to achieve optimal levels of output variables (response variables). Usual optimization methods often begin with estimating the relation function between the response variable and the control variab...

متن کامل

Monthly runoff forecasting by means of artificial neural networks (ANNs)

Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...

متن کامل

Prediction the Return Fluctuations with Artificial Neural Networks' Approach

Time changes of return, inefficiency studies performed and presence of effective factors on share return rate are caused development modern and intelligent methods in estimation and evaluation of share return in stock companies. Aim of this research is prediction of return using financial variables with artificial neural network approach. Therefore, the statistical population of this study incl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002